jieye の 数字花园

Search

Search IconIcon to open search

Redis原理

Last updated Unknown

# Redis 原理

# Redis 原理

image.png

# 1.数据类型

# 1 Redis 键 (key)

keys 查看当前库所有 key    (匹配:keys 1)
exists key 判断某个 key 是否存在
type key 查看你的 key 是什么类型
del key 删除指定的 key 数据
unlink key 根据 value 选择非阻塞删除

仅将 keys 从 keyspace 元数据中删除,真正的删除会在后续异步操作。

expire key 10   10 秒钟:为给定的 key 设置过期时间
ttl key 查看还有多少秒过期,-1 表示永不过期,-2 表示已过期
select 命令切换数据库
dbsize 查看当前数据库的 key 的数量
flushdb 清空当前库
flushall 通杀全部库

# 2 字符串 (String)

String 是 Redis 最基本的类型,你可以理解成与 Memcached 一模一样的类型,一个 key 对应一个 value。
String 类型是二进制安全的。意味着 Redis 的 string 可以包含任何数据。比如 jpg 图片或者序列化的对象。
String 类型是 Redis 最基本的数据类型,一个 Redis 中字符串 value 最多可以是 512M。

# 命令

1
2
3
4
*NX:当数据库中key不存在时,可以将key-value添加数据库
*XX:当数据库中key存在时,可以将key-value添加数据库,与NX参数互斥
*EX:key的超时秒数
*PX:key的超时毫秒数,与EX互斥

所谓原子操作是指不会被线程调度机制打断的操作;
这种操作一旦开始,就一直运行到结束,中间不会有任何 context switch (切换到另一个线程)。
(1)在单线程中,能够在单条指令中完成的操作都可以认为是 " 原子操作 “,因为中断只能发生于指令之间。
(2)在多线程中,不能被其它进程(线程)打断的操作就叫原子操作。

Redis 单命令的原子性主要得益于 Redis 的单线程。

# 数据结构

String 的数据结构为简单动态字符串 (Simple Dynamic String,缩写 SDS)。是可以修改的字符串,内部结构实现上类似于 JavaArrayList,采用预分配冗余空间的方式来减少内存的频繁分配.

如图中所示,内部为当前字符串实际分配的空间 capacity 一般要高于实际字符串长度 len。当字符串长度小于 1M 时,扩容都是加倍现有的空间,如果超过 1M,扩容时一次只会多扩 1M 的空间。需要注意的是字符串最大长度为 512M。

# 3 列表 List

单键多值:Redis 列表是简单的字符串列表,按照插入顺序排序。你可以添加一个元素到列表的头部(左边)或者尾部(右边)。
它的底层实际是个双向链表,对两端的操作性能很高,通过索引下标的操作中间的节点性能会较差。

# 命令
# 数据结构

List 的数据结构为快速链表 quickList。
首先在列表元素较少的情况下会使用一块连续的内存存储,这个结构是 ziplist,也即是压缩列表。它将所有的元素紧挨着一起存储,分配的是一块连续的内存。
当数据量比较多的时候才会改成 quicklist。因为普通的链表需要的附加指针空间太大,会比较浪费空间。比如这个列表里存的只是 int 类型的数据,结构上还需要两个额外的指针 prev 和 next。

Redis 将链表和 ziplist 结合起来组成了 quicklist。也就是将多个 ziplist 使用双向指针串起来使用。这样既满足了快速的插入删除性能,又不会出现太大的空间冗余。

# 4 Set

Redis set 对外提供的功能与 list 类似是一个列表的功能,特殊之处在于 set 是可以自动排重的,当你需要存储一个列表数据,又不希望出现重复数据时,set 是一个很好的选择,并且 set 提供了判断某个成员是否在一个 set 集合内的重要接口,这个也是 list 所不能提供的。

Redis 的 Set 是 string 类型的无序集合。它底层其实是一个 value 为 null 的 hash 表,所以添加,删除,查找的复杂度都是****O(1)

一个算法,随着数据的增加,执行时间的长短,如果是 O(1),数据增加,查找数据的时间不变

# 命令
# 数据结构

Set 数据结构是 dict 字典,字典是用哈希表实现的。

Java 中 HashSet 的内部实现使用的是 HashMap,只不过所有的 value 都指向同一个对象。Redis 的 set 结构也是一样,它的内部也使用 hash 结构,所有的 value 都指向同一个内部值。

# 5 哈希 (Hash)

Redis hash 是一个键值对集合。

Redis hash 是一个 string 类型的 field 和 value 的映射表,hash 特别适合用于存储对象。

类似 Java 里面的 Map<String,Object>
用户 ID 为查找的 key,存储的 value 用户对象包含姓名,年龄,生日等信息,如果用普通的 key/value 结构来存储
主要有以下 2 种存储方式:



通过 key(用户 ID) + field(属性标签) 就可以操作对应属性数据了,既不需要重复存储数据,也不会带来序列化和并发修改控制的问题

# 命令
# 数据结构

Hash 类型对应的数据结构是两种:ziplist(压缩列表),hashtable(哈希表)。当 field-value 长度较短且个数较少时,使用 ziplist,否则使用 hashtable。

# 6 有序集合 Zset(sorted set)

Redis 有序集合 zset 与普通集合 set 非常相似,是一个没有重复元素的字符串集合。

不同之处是有序集合的每个成员都关联了一个**评分(score),这个评分(score)被用来按照从最低分到最高分的方式排序集合中的成员。集合的成员是唯一的,但是评分可以是重复了。

因为元素是有序的, 所以你也可以很快的根据评分(score)或者次序(position)来获取一个范围的元素。

访问有序集合的中间元素也是非常快的,因此你能够使用有序集合作为一个没有重复成员的智能列表。

# 命令
# 数据结构

SortedSet(zset) 是 Redis 提供的一个非常特别的数据结构,一方面它等价于 Java 的数据结构 Map<String, Double>,可以给每一个元素 value 赋予一个权重 score,另一方面它又类似于 TreeSet,内部的元素会按照权重 score 进行排序,可以得到每个元素的名次,还可以通过 score 的范围来获取元素的列表。
zset 底层使用了两个数据结构
(1)hash,hash 的作用就是关联元素 value 和权重 score,保障元素 value 的唯一性,可以通过元素 value 找到相应的 score 值。
(2)跳跃表,跳跃表的目的在于给元素 value 排序,根据 score 的范围获取元素列表。
跳跃表
有序集合在生活中比较常见,例如根据成绩对学生排名,根据得分对玩家排名等。对于有序集合的底层实现,可以用数组、平衡树、链表等。数组不便元素的插入删除;平衡树或红黑树虽然效率高但结构复杂;链表查询需要遍历所有效率低。Redis 采用的是跳跃表。跳跃表效率堪比红黑树,实现远比红黑树简单。
对比有序链表和跳跃表,从链表中查询出 51:

  1. 有序链表

    要查找值为 51 的元素,需要从第一个元素开始依次查找、比较才能找到。共需要 6 次比较
  2. 跳跃表

    从第 2 层开始,1 节点比 51 节点小,向后比较
    21 节点比 51 节点小,继续向后比较,后面就是 NULL 了,所以从 21 节点向下到第 1 层
    在第 1 层,41 节点比 51 节点小,继续向后,61 节点比 51 节点大,所以从 41 向下
    在第 0 层,51 节点为要查找的节点,节点被找到,共查找 4 次
    从此可以看出跳跃表比有序链表效率要高
# 7 Bitmaps

现代计算机用二进制(位)作为信息的基础单位,1 个字节等于 8 位,例如“abc”字符串是由 3 个字节组成,但实际在计算机存储时将其用二进制表示, “abc”分别对应的 ASCII 码分别是 97、 98、 99, 对应的二进制分别是 01100001、01100010 和 01100011,如下图

合理地使用操作位能够有效地提高内存使用率和开发效率。
Redis 提供了 Bitmaps 这个“数据类型”可以实现对位的操作:

  1. Bitmaps 本身不是一种数据类型,实际上它就是字符串(key-value) , 但是它可以对字符串的位进行操作。
  2. Bitmaps 单独提供了一套命令,所以在 Redis 中使用 Bitmaps 和使用字符串的方法不太相同。可以把 Bitmaps 想象成一个以位为单位的数组,数组的每个单元只能存储 0 和 1,数组的下标在 Bitmaps 中叫做偏移量。
# 命令

setbit<key><offset><value>设置Bitmaps中某个偏移量的值(0或1)
getbit<key><offset>获取Bitmaps中某个偏移量的值
bitcount 统计字符串被设置为 1 的 bit 数。一般情况下,给定的整个字符串都会被进行计数,通过指定额外的 start 或 end 参数,可以让计数只在特定的位上进行。start 和 end 参数的设置,都可以使用负数值:比如 -1 表示最后一个位,而 -2 表示倒数第二个位,start、end 是指 bit 组的字节的下标数,二者皆包含。
bitcount<key>[start end] 统计字符串从start字节到end字节比特值为1的数量
bitop  and(or/not/xor) <destkey> [key…]bitop 是一个复合操作, 它可以做多个 Bitmaps 的 and(交集) 、 or(并集) 、 not(非) 、 xor(异或) 操作并将结果保存在 destkey 中。

# Bitmaps 与 Set 对比

假设网站有 1 亿用户,每天独立访问的用户有 5 千万, 如果每天用集合类型和 Bitmaps 分别存储活跃用户可以得到表

很明显,这种情况下使用 Bitmaps 能节省很多的内存空间,尤其是随着时间推移节省的内存还是非常可观的

但 Bitmaps 并不是万金油,假如该网站每天的独立访问用户很少,例如只有 10 万(大量的僵尸用户),那么两者的对比如下表所示,很显然,这时候使用 Bitmaps 就不太合适了,因为基本上大部分位都是 0。

# 8 HyperLogLog

在工作当中,我们经常会遇到与统计相关的功能需求,比如统计网站 P(PageView 页面访问量),可以使用 Redis 的 incr、incrby 轻松实现。
但像 UV(UniqueVisitor,独立访客)、独立 IP 数、搜索记录数等需要去重和计数的问题如何解决?这种求集合中不重复元素个数的问题称为基数问题

解决基数问题有很多种方案:
(1)数据存储在 MySQL 表中,使用 distinct count 计算不重复个数
(2)使用 Redis 提供的 hash、set、bitmaps 等数据结构来处理
以上的方案结果精确,但随着数据不断增加,导致占用空间越来越大,对于非常大的数据集是不切实际的。
能否能够降低一定的精度来平衡存储空间?Redis 推出了 HyperLogLog
Redis HyperLogLog 是用来做基数统计的算法,HyperLogLog 的优点是,在输入元素的数量或者体积非常非常大时,计算基数所需的空间总是固定的、并且是很小的。
在 Redis 里面,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的基数。这和计算基数时,元素越多耗费内存就越多的集合形成鲜明对比。
但是,因为 HyperLogLog 只会根据输入元素来计算基数,而不会储存输入元素本身,所以 HyperLogLog 不能像集合那样,返回输入的各个元素。
什么是基数?
比如数据集 {1, 3, 5, 7, 5, 7, 8}, 那么这个数据集的基数集为 {1, 3, 5 ,7, 8}, 基数 (不重复元素) 为 5。 基数估计就是在误差可接受的范围内,快速计算基数。
pfadd <key>< element> [element …]   添加指定元素到 HyperLogLog 中
pfcount<key> [key …] 计算HLL的近似基数,可以计算多个HLL,比如用HLL存储每天的UV,计算一周的UV可以使用7天的UV合并计算即可
pfmerge<destkey><sourcekey> [sourcekey …]  将一个或多个HLL合并后的结果存储在另一个HLL中,比如每月活跃用户可以使用每天的活跃用户来合并计算可得

# 9 Geospatial

Redis 3.2 中增加了对 GEO 类型的支持。GEO,Geographic,地理信息的缩写。该类型,就是元素的 2 维坐标,在地图上就是经纬度。redis 基于该类型,提供了经纬度设置,查询,范围查询,距离查询,经纬度 Hash 等常见操作。
geoadd<key>< longitude><latitude><member> [longitude latitude member…]   添加地理位置(经度,纬度,名称)
两极无法直接添加,一般会下载城市数据,直接通过 Java 程序一次性导入。
有效的经度从 -180 度到 180 度。有效的纬度从 -85.05112878 度到 85.05112878 度。
当坐标位置超出指定范围时,该命令将会返回一个错误。已经添加的数据,是无法再次往里面添加的。
geopos  <key><member> [member…]  获得指定地区的坐标值
geodist<key><member1><member2>  [m|km|ft|mi ]  获取两个位置之间的直线距离
georadius<key>< longitude><latitude>radius  m|km|ft|mi   以给定的经纬度为中心,找出某一半径内的元素

# 2.发布和订阅

# 3.事务

Redis 事务是一个单独的隔离操作:事务中的所有命令都会序列化、按顺序地执行。事务在执行的过程中,不会被其他客户端发送来的命令请求所打断。
Redis 事务的主要作用就是串联多个命令防止别的命令插队。

# Multi、Exec、discard

从输入 Multi 命令开始,输入的命令都会依次进入命令队列中,但不会执行,直到输入 Exec 后,Redis 会将之前的命令队列中的命令依次执行。

组队的过程中可以通过 discard 来放弃组队。



事务的错误处理
组队中某个命令出现了报告错误,执行时整个的所有队列都会被取消