9 性能分析工具的使用
# 9 性能分析工具的使用
# 1.数据库服务器的优化步骤
当我们遇到数据库调优问题的时候,该如何思考呢?这里把思考的流程整理成下面这张图。 整个流程划分成了 观察(Show status) 和 行动(Action) 两个部分。字母 S 的部分代表观察(会使用相应的分析工具),字母 A 代表的部分是行动(对应分析可以采取的行动)。
我们可以通过观察了解数据库整体的运行状态,通过性能分析工具可以让我们了解执行慢的SQL都有哪些,查看具体的SQL执行计划,甚至是SQL执行中的每一步的成本代价, 这样才能定位问题所在,找到了问题,再采取相应的行动。
详细解释一下这张图:
- 首先在S1部分,我们需要观察服务器的状态是否存在周期性的波动。如果存在周期性波动,有可能是周期性节点的原因,比如双十一、促销活动等。这样的话,我们可以通过A1这一步骤解决,也就是加缓存,或者更改缓存失效策略。
- 如果缓存策略没有解决,或者不是周期性波动的原因,我们就需要进一步分析查询延迟和卡顿的原因。接下来进入S2这一步,我们需要开启慢查询。慢查询可以帮我们定位执行慢的SQL语句。我们可以通过设置long_ query_ time参数定义“慢”的阈值,如果SQL执行时间超过了long_query_time, 则会认为是慢查询。当收集上来这些慢查询之后,我们就可以通过分析工具对慢查询日志进行分析。
- 在S3这一步骤中,我们就知道了执行慢的SQL,这样就可以针对性地用EXPLAIN查看对应SQL语句的执行计划,或者使用show profile 查看SQL中每个步骤的时间成本。这样我们就可以了解SQL查询慢是因为执行时间长,还是等待时间长。
- 如果是SQL等待时间长,我们进入A2步骤。在这一步骤中, 我们可以调优服务器的参数,比如适当增加数据库缓冲池等。
- 如果是SQL执行时间长,就进入A3步骤,这一步中我们需要考虑是索引设计的问题?还是查询关联的数据表过多?还是因为数据表的字段设计问题导致了这一现象。 然后在这些维度上进行对应的调整。
- 如果A2和A3都不能解决问题,我们需要考虑数据库自身的SQL查询性能是否已经达到了瓶颈,如果确认没有达到性能瓶颈,就需要重新检查,重复以上的步骤。如果已经达到了性能瓶颈,进入A4阶段,需要考虑增加服务器,采用读写分离的架构,或者考虑对数据库进行分库分表,比如垂直分库、垂直分表和水平分表等。
以上就是数据库调优的流程思路。如果我们发现执行SQL时存在不规则延迟或卡顿的时候,就可以采用分析工具帮我们定位有问题的SQL,这三种分析工具你可以理解是SQL调优的三个步骤:慢查询、EXPLAIN 和SHOW PROFILING。
# 2. 查看系统性能参数
在MySQL中,可以使用 SHOW STATUS 语句查询一些MySQL数据库服务器的性能参数 、 执行频率 。 SHOW STATUS语句语法如下:
SHOW [GLOBAL|SESSION] STATUS LIKE '参数';
一些常用的性能参数如下:
- Connections:连接MySQL服务器的次数。
- Uptime:MySQL服务器的上线时间。
- Slow_queries:慢查询的次数。
- Innodb_rows_read:Select查询返回的行数
- Innodb_rows_inserted:执行INSERT操作插入的行数
- Innodb_rows_updated:执行UPDATE操作更新的 行数
- Innodb_rows_deleted:执行DELETE操作删除的行数
- Com_select:查询操作的次数。
- Com_insert:插入操作的次数。对于批量插入的 INSERT 操作,只累加一次。
- Com_update:更新操作 的次数。
- Com_delete:删除操作的次数。