jieye の 数字花园

Search

Search IconIcon to open search

综合

Last updated Nov 1, 2021

# 综合

# 1.当你在浏览器中输入 Google.com 并且按下回车之后发生了什么?

  1. 首先会对 URL 进行解析,分析所需要使用的传输协议和请求的资源的路径。如果输入的 URL 中的协议或者主机名不合法,将会把地址栏中输入的内容传递给搜索引擎。如果没有问题,浏览器会检查 URL 中是否出现了非法字符,如果存在非法字符,则对非法字符进行转义后再进行下一过程。
  2. 浏览器会判断所请求的资源是否在缓存里,如果请求的资源在缓存里并且没有失效,那么就直接使用,否则向服务器发起新的请求。
  3. 下一步我们首先需要获取的是输入的 URL 中的域名的 IP 地址,首先会判断本地是否有该域名的 IP 地址的缓存,如果有则使用,如果没有则向本地 DNS 服务器发起请求。本地 DNS 服务器也会先检查是否存在缓存,如果没有就会先向根域名服务器发起请求,获得负责的顶级域名服务器的地址后,再向顶级域名服务器请求,然后获得负责的权威域名服务器的地址后,再向权威域名服务器发起请求,最终获得域名的 IP 地址后,本地 DNS 服务器再将这个 IP 地址返回给请求的用户。用户向本地 DNS 服务器发起请求属于递归请求,本地 DNS 服务器向各级域名服务器发起请求属于迭代请求。
  4. 当浏览器得到 IP 地址后,数据传输还需要知道目的主机 MAC 地址,因为应用层下发数据给传输层,TCP 协议会指定源端口号和目的端口号,然后下发给网络层。网络层会将本机地址作为源地址,获取的 IP 地址作为目的地址。然后将下发给数据链路层,数据链路层的发送需要加入通信双方的 MAC 地址,我们本机的 MAC 地址作为源 MAC 地址,目的 MAC 地址需要分情况处理,通过将 IP 地址与我们本机的子网掩码相与,我们可以判断我们是否与请求主机在同一个子网里,如果在同一个子网里,我们可以使用 APR 协议获取到目的主机的 MAC 地址,如果我们不在一个子网里,那么我们的请求应该转发给我们的网关,由它代为转发,此时同样可以通过 ARP 协议来获取网关的 MAC 地址,此时目的主机的 MAC 地址应该为网关的地址。
  5. 下面是 TCP 建立连接的三次握手的过程,首先客户端向服务器发送一个 SYN 连接请求报文段和一个随机序号,服务端接收到请求后向服务器端发送一个 SYN ACK报文段,确认连接请求,并且也向客户端发送一个随机序号。客户端接收服务器的确认应答后,进入连接建立的状态,同时向服务器也发送一个 ACK 确认报文段,服务器端接收到确认后,也进入连接建立状态,此时双方的连接就建立起来了。
  6. 如果使用的是 HTTPS 协议,在通信前还存在 TLS 的一个四次握手的过程。首先由客户端向服务器端发送使用的协议的版本号、一个随机数和可以使用的加密方法。服务器端收到后,确认加密的方法,也向客户端发送一个随机数和自己的数字证书。客户端收到后,首先检查数字证书是否有效,如果有效,则再生成一个随机数,并使用证书中的公钥对随机数加密,然后发送给服务器端,并且还会提供一个前面所有内容的 hash 值供服务器端检验。服务器端接收后,使用自己的私钥对数据解密,同时向客户端发送一个前面所有内容的 hash 值供客户端检验。这个时候双方都有了三个随机数,按照之前所约定的加密方法,使用这三个随机数生成一把秘钥,以后双方通信前,就使用这个秘钥对数据进行加密后再传输。
  7. 当页面请求发送到服务器端后,服务器端会返回一个 html 文件作为响应,浏览器接收到响应后,开始对 html 文件进行解析,开始页面的渲染过程。
  8. 浏览器首先会根据 html 文件构建 DOM 树,根据解析到的 css 文件构建 CSSOM 树,如果遇到 script 标签,则判端是否含有 defer 或者 async 属性,要不然 script 的加载和执行会造成页面的渲染的阻塞。当 DOM 树和 CSSOM 树建立好后,根据它们来构建渲染树。渲染树构建好后,会根据渲染树来进行布局。布局完成后,最后使用浏览器的 UI 接口对页面进行绘制。这个时候整个页面就显示出来了。
  9. 最后一步是 TCP 断开连接的四次挥手过程。

# 2.服务端挂了,客户端的 TCP 连接还在吗?

写的很好

  1. 服务端挂掉 指的是「服务端进程崩溃」,服务端的进程在发生崩溃的时候,内核会发送 FIN 报文,与客户端进行四次挥手。
  2. 服务端挂掉 指的是「服务端主机宕机」,那么是不会发生四次挥手的,具体后续会发生什么还要看客户端会不会发送数据。
    • 如果客户端会发送数据,由于服务端已经不存在,客户端的数据报文会超时重传,当重传总间隔时长达到一定阈值(内核会根据 tcp_retries2 设置的值计算出一个阈值)后,会断开 TCP 连接;
    • 如果客户端一直不会发送数据,再看客户端有没有开启 TCP keepalive 机制?
      • 如果有开启,客户端在一段时间没有进行数据交互时,会触发 TCP keepalive机制,探测对方是否存在,如果探测到对方已经消亡,则会断开自身的 TCP 连接;
      • 如果没有开启,客户端的 TCP 连接会一直存在,并且一直保持在ESTABLISHED 状态。

# HTTP

# HTTP 常见的状态码,有哪些?

# 1xx

1xx 类状态码属于提示信息,是协议处理中的一种中间状态,实际用到的比较少。

# 2xx

2xx 类状态码表示服务器成功处理了客户端的请求,也是我们最愿意看到的状态。
200 OK」是最常见的成功状态码,表示一切正常。如果是非 HEAD 请求,服务器返回的响应头都会有 body 数据。
204 No Content」也是常见的成功状态码,与 200 OK 基本相同,但响应头没有 body 数据。
206 Partial Content」是应用于 HTTP 分块下载或断电续传,表示响应返回的 body 数据并不是资源的全部,而是其中的一部分,也是服务器处理成功的状态。

# 3xx

3xx 类状态码表示客户端请求的资源发送了变动,需要客户端用新的 URL 重新发送请求获取资源,也就是重定向
301 Moved Permanently」表示永久重定向,说明请求的资源已经不存在了,需改用新的 URL 再次访问。
302 Moved Permanently」表示临时重定向,说明请求的资源还在,但暂时需要用另一个 URL 来访问。
301 和 302 都会在响应头里使用字段 Location,指明后续要跳转的URL,浏览器会自动重定向新的URL。
304 Not Modified」不具有跳转的含义,表示资源未修改,重定向已存在的缓冲文件,也称缓存重定向,用于缓存控制。

# 4xx

4xx 类状态码表示客户端发送的报文有误,服务器无法处理,也就是错误码的含义。
400 Bad Request」表示客户端请求的报文有错误,但只是个笼统的错误。
403 Forbidden」表示服务器禁止访问资源,并不是客户端的请求出错。
404 Not Found」表示请求的资源在服务器上不存在或未找到,所以无法提供给客户端。

# 5xx

5xx 类状态码表示客户端请求报文正确,但是服务器处理时内部发生了错误,属于服务器端的错误码。
500 Internal Server Error」与 400 类型,是个笼统通用的错误码,服务器发生了什么错误,我们并不知道。
501 Not Implemented」表示客户端请求的功能还不支持,类似“即将开业,敬请期待”的意思。
502 Bad Gateway」通常是服务器作为网关或代理时返回的错误码,表示服务器自身工作正常,访问后端服务器发生了错误。
503 Service Unavailable」表示服务器当前很忙,暂时无法响应服务器,类似“网络服务正忙,请稍后重试”的意思。

# http 常见字段有哪些?

Host
客户端发送请求时,用来指定服务器的域名。

1
Host: www.A.com

有了 Host 字段,就可以将请求发往「同一台」服务器上的不同网站。
Content-Length 字段
服务器在返回数据时,会有 Content-Length 字段,表明本次回应的数据长度。

1
Content-Length: 1000

如上面则是告诉浏览器,本次服务器回应的数据长度是 1000 个字节,后面的字节就属于下一个回应了。
Connection 字段
Connection 字段最常用于客户端要求服务器使用 TCP 持久连接,以便其他请求复用。
HTTP/1.1 版本的默认连接都是持久连接,但为了兼容老版本的 HTTP,需要指定 Connection 首部字段的值为 Keep-Alive

1
Connection: keep-alive

一个可以复用的 TCP 连接就建立了,直到客户端或服务器主动关闭连接。但是,这不是标准字段。
Content-Type 字段
Content-Type 字段用于服务器回应时,告诉客户端,本次数据是什么格式。

1
Content-Type: text/html; charset=utf-8

上面的类型表明,发送的是网页,而且编码是UTF-8。
客户端请求的时候,可以使用 Accept 字段声明自己可以接受哪些数据格式。

1
Accept: */*

上面代码中,客户端声明自己可以接受任何格式的数据。
Content-Encoding 字段
Content-Encoding 字段说明数据的压缩方法。表示服务器返回的数据使用了什么压缩格式

1
Content-Encoding: gzip

上面表示服务器返回的数据采用了 gzip 方式压缩,告知客户端需要用此方式解压。
客户端在请求时,用 Accept-Encoding 字段说明自己可以接受哪些压缩方法。

1
Accept-Encoding: gzip, deflate

# GET 与 POST

# 说一下 GET 和 POST 的区别?

Get 方法的含义是请求从服务器获取资源,这个资源可以是静态的文本、页面、图片视频等。
比如,你打开我的文章,浏览器就会发送 GET 请求给服务器,服务器就会返回文章的所有文字及资源。
POST 方法则是相反操作,它向 URI 指定的资源提交数据,数据就放在报文的 body 里。
比如,你在我文章底部,敲入了留言后点击「提交」(暗示你们留言),浏览器就会执行一次 POST 请求,把你的留言文字放进了报文 body 里,然后拼接好 POST 请求头,通过 TCP 协议发送给服务器。

# GET 和 POST 方法都是安全和幂等的吗?

先说明下安全和幂等的概念:

# HTTP/1.1的优点缺点

HTTP 最凸出的优点是「简单、灵活和易于扩展、应用广泛和跨平台」。
1. 简单
HTTP 基本的报文格式就是 header + body,头部信息也是 key-value 简单文本的形式,易于理解,降低了学习和使用的门槛。
2. 灵活和易于扩展
HTTP协议里的各类请求方法、URI/URL、状态码、头字段等每个组成要求都没有被固定死,都允许开发人员自定义和扩充
同时 HTTP 由于是工作在应用层( OSI 第七层),则它下层可以随意变化
HTTPS 也就是在 HTTP 与 TCP 层之间增加了 SSL/TLS 安全传输层,HTTP/3 甚至把 TCPP 层换成了基于 UDP 的 QUIC。
3. 应用广泛和跨平台
互联网发展至今,HTTP 的应用范围非常的广泛,从台式机的浏览器到手机上的各种 APP,从看新闻、刷贴吧到购物、理财、吃鸡,HTTP 的应用片地开花,同时天然具有跨平台的优越性。

缺点
HTTP 协议里有优缺点一体的双刃剑,分别是「无状态、明文传输」,同时还有一大缺点「不安全」。
1. 无状态双刃剑
无状态的好处,因为服务器不会去记忆 HTTP 的状态,所以不需要额外的资源来记录状态信息,这能减轻服务器的负担,能够把更多的 CPU 和内存用来对外提供服务。
无状态的坏处,既然服务器没有记忆能力,它在完成有关联性的操作时会非常麻烦。
例如登录->添加购物车->下单->结算->支付,这系列操作都要知道用户的身份才行。但服务器不知道这些请求是有关联的,每次都要问一遍身份信息。
这样每操作一次,都要验证信息,这样的购物体验还能愉快吗?别问,问就是酸爽
对于无状态的问题,解法方案有很多种,其中比较简单的方式用 Cookie 技术。
Cookie 通过在请求和响应报文中写入 Cookie 信息来控制客户端的状态。
相当于,在客户端第一次请求后,服务器会下发一个装有客户信息的「小贴纸」,后续客户端请求服务器的时候,带上「小贴纸」,服务器就能认得了了
2. 明文传输双刃剑
明文意味着在传输过程中的信息,是可方便阅读的,通过浏览器的 F12 控制台或 Wireshark 抓包都可以直接肉眼查看,为我们调试工作带了极大的便利性。
但是这正是这样,HTTP 的所有信息都暴露在了光天化日下,相当于信息裸奔。在传输的漫长的过程中,信息的内容都毫无隐私可言,很容易就能被窃取,如果里面有你的账号密码信息,那你号没了
3. 不安全
HTTP 比较严重的缺点就是不安全:

# HTTP/1.1的性能

HTTP 协议是基于 TCP/IP,并且使用了「请求 - 应答」的通信模式,所以性能的关键就在这两点里。
1. 长连接
早期 HTTP/1.0 性能上的一个很大的问题,那就是每发起一个请求,都要新建一次 TCP 连接(三次握手),而且是串行请求,做了无畏的 TCP 连接建立和断开,增加了通信开销。
为了解决上述 TCP 连接问题,HTTP/1.1 提出了长连接的通信方式,也叫持久连接。这种方式的好处在于减少了 TCP 连接的重复建立和断开所造成的额外开销,减轻了服务器端的负载。
持久连接的特点是,只要任意一端没有明确提出断开连接,则保持 TCP 连接状态。
短连接与长连接
2. 管道网络传输
HTTP/1.1 采用了长连接的方式,这使得管道(pipeline)网络传输成为了可能。
即可在同一个 TCP 连接里面,客户端可以发起多个请求,只要第一个请求发出去了,不必等其回来,就可以发第二个请求出去,可以减少整体的响应时间。
举例来说,客户端需要请求两个资源。以前的做法是,在同一个TCP连接里面,先发送 A 请求,然后等待服务器做出回应,收到后再发出 B 请求。管道机制则是允许浏览器同时发出 A 请求和 B 请求。
管道网络传输
但是服务器还是按照顺序,先回应 A 请求,完成后再回应 B 请求。要是前面的回应特别慢,后面就会有许多请求排队等着。这称为「队头堵塞」。
3. 队头阻塞
「请求 - 应答」的模式加剧了 HTTP 的性能问题。
因为当顺序发送的请求序列中的一个请求因为某种原因被阻塞时,在后面排队的所有请求也一同被阻塞了,会招致客户端一直请求不到数据,这也就是「队头阻塞」。好比上班的路上塞车

队头阻塞队头阻塞
总之 HTTP/1.1 的性能一般般,后续的 HTTP/2 和 HTTP/3 就是在优化 HTTP 的性能。

# HTTPS特点

# HTTPS建立连接过程

SSL/TLS 协议基本流程:

# HTTP/1.1 相比 HTTP/1.0 的提高

HTTP/1.1 相比 HTTP/1.0 性能上的改进:

# HTTP/2

HTTP/2 协议是基于 HTTPS 的,所以 HTTP/2 的安全性也是有保障的。
那 HTTP/2 相比 HTTP/1.1 性能上的改进:
1. 头部压缩
HTTP/2 会压缩头(Header)如果你同时发出多个请求,他们的头是一样的或是相似的,那么,协议会帮你消除重复的分
这就是所谓的 HPACK 算法:在客户端和服务器同时维护一张头信息表,所有字段都会存入这个表,生成一个索引号,以后就不发送同样字段了,只发送索引号,这样就提高速度了。
2. 二进制格式
HTTP/2 不再像 HTTP/1.1 里的纯文本形式的报文,而是全面采用了二进制格式。
头信息和数据体都是二进制,并且统称为帧(frame):头信息帧和数据帧
报文区别报文区别
这样虽然对人不友好,但是对计算机非常友好,因为计算机只懂二进制,那么收到报文后,无需再将明文的报文转成二进制,而是直接解析二进制报文,这增加了数据传输的效率
3. 数据流
HTTP/2 的数据包不是按顺序发送的,同一个连接里面连续的数据包,可能属于不同的回应。因此,必须要对数据包做标记,指出它属于哪个回应。
每个请求或回应的所有数据包,称为一个数据流(Stream)。
每个数据流都标记着一个独一无二的编号,其中规定客户端发出的数据流编号为奇数, 服务器发出的数据流编号为偶数

客户端还可以指定数据流的优先级。优先级高的请求,服务器就先响应该请求。

HTT/1 ~ HTTP/2
4. 多路复用
HTTP/2 是可以在一个连接中并发多个请求或回应,而不用按照顺序一一对应
移除了 HTTP/1.1 中的串行请求,不需要排队等待,也就不会再出现「队头阻塞」问题,降低了延迟,大幅度提高了连接的利用率
举例来说,在一个 TCP 连接里,服务器收到了客户端 A 和 B 的两个请求,如果发现 A 处理过程非常耗时,于是就回应 A 请求已经处理好的部分,接着回应 B 请求,完成后,再回应 A 请求剩下的部分。

多路复用多路复用
5. 服务器推送
HTTP/2 还在一定程度上改善了传统的「请求 - 应答」工作模式,服务不再是被动地响应,也可以主动向客户端发送消息。
举例来说,在浏览器刚请求 HTML 的时候,就提前把可能会用到的 JS、CSS 文件等静态资源主动发给客户端,减少延时的等待,也就是服务器推送(Server Push,也叫 Cache Push)。

# HTTP/2 有哪些缺陷?HTTP/3 做了哪些优化?

HTTP/2 主要的问题在于:多个 HTTP 请求在复用一个 TCP 连接,下层的 TCP 协议是不知道有多少个 HTTP 请求的。
所以一旦发生了丢包现象,就会触发 TCP 的重传机制,这样在一个 TCP 连接中的所有的 HTTP 请求都必须等待这个丢了的包被重传回来